Back propagation in BatchNorm
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Introduction:
| was reading the paper on BatchNorm [Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift; by Sergey loffe and Christian Szegedy] and stumbled upon a number
of equations.
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Figure 1: The back propagation through the batch norm layer

These equations are responsible for the backward propagation through a batch norm layer. Even after
reading the equations multiple times | found the equations very unintuitive. This led me to sit down with
my notepad and scribble the forward and backward propagation graphs. | thought of uploading a scan of
my notepad but that would not have been helpful at all (my handwriting can kill people, in the negative
sense). Here | am providing my sketches and derivations to make sense of what the authors say
through the equations.

Aside: It would really help if you open the paper along side this blog post. The notations used here are
exactly the same as that of the paper.

Feed Forward.:
An excerpt from the paper will familiarize the reader to the notations used.
"Consider a min-atch B of size m. Since the normalization is applied to each activation independently, let

us focus on a particular activation x® and omit k for clarity. We have m values of activation in the mini-
batch;

B = {xl...m}

Let the normalized values be 551 .+ and their linear transformations be y;_,."

The mean and variance of the mini-batch are L and 0123 respectively. y and f are the scaling and
shifting parameters of the batch-norm layer.
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Back Propagation:

al
Let us consider that we have — flowing upstream into our network. We will back-prop into every
i

parameter in the batch-norm with the help of chain rule. For our convenience we will replace 8_ where a
a
is any parameter, with da.
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Diff (4) wrt ;c? we get
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Note to the reader: When the gradient dy; flows into the network, each of the i™" element of x; is effected
by the corresponding i™" element of dy;. Now to consider all the collective gradient flow for the single
valued 8 and y we need to add the gradients flowing in.

Dif f (4) wrt p we get
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Dif f (4) wrt y we get
E)yi ~
— =X (7

8)/_



8)/ =1 ayl 87/
od =, -~

—_ — = Zdyi.xi (From 7)
C) -

N
A note for the reader: When the gradient dx; flows into the network, each of the i™" element of X; is

N
effected by the corresponding i™" element of dx; . Now to consider all the collective gradient flow for
single valued pp and 0123 we need to add the gradients flowing in.
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Diff (1) wrt x;,
removing the summation sign as the grad is done element wise
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Dif f (2) wrt x;
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Diff (3) wrt x;
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Final thoughts:

Pardon my poor drawing and EXTEX skills. This is not a blog per say but a piece that helps build the
intuitions for the process. | hope the reader is clear with the process and can visualize how beautiful the
idea of batch norm is.

I would love to hear from the reader on any discrepancies and extensions to this work. Thank you for
your time.



