Back propagation in BatchNorm

Author: Aritra Roy Gosthipaty Date: 12 August 2020

Introduction:

I was reading the paper on BatchNorm [Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift; by Sergey Ioffe and Christian Szegedy] and stumbled upon a number of equations.

$$
\begin{aligned}
\frac{\partial \ell}{\partial \widehat{x}_{i}} & =\frac{\partial \ell}{\partial y_{i}} \cdot \gamma \\
\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} & =\sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot\left(x_{i}-\mu_{\mathcal{B}}\right) \cdot \frac{-1}{2}\left(\sigma_{\mathcal{B}}^{2}+\epsilon\right)^{-3 / 2} \\
\frac{\partial \ell}{\partial \mu_{\mathcal{B}}} & =\left(\sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}}\right)+\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{\sum_{i=1}^{m}-2\left(x_{i}-\mu_{\mathcal{B}}\right)}{m} \\
\frac{\partial \ell}{\partial x_{i}} & =\frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{1}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}}+\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{2\left(x_{i}-\mu_{\mathcal{B}}\right)}{m}+\frac{\partial \ell}{\partial \mu_{\mathcal{B}}} \cdot \frac{1}{m} \\
\frac{\partial \ell}{\partial \gamma} & =\sum_{i=1}^{m} \frac{\partial \ell}{\partial y_{i}} \cdot \widehat{x}_{i} \\
\frac{\partial \ell}{\partial \beta} & =\sum_{i=1}^{m} \frac{\partial \ell}{\partial y_{i}}
\end{aligned}
$$

Figure 1: The back propagation through the batch norm layer
These equations are responsible for the backward propagation through a batch norm layer. Even after reading the equations multiple times I found the equations very unintuitive. This led me to sit down with my notepad and scribble the forward and backward propagation graphs. I thought of uploading a scan of my notepad but that would not have been helpful at all (my handwriting can kill people, in the negative sense). Here I am providing my sketches and derivations to make sense of what the authors say through the equations.
Aside: It would really help if you open the paper along side this blog post. The notations used here are exactly the same as that of the paper.

Feed Forward:

An excerpt from the paper will familiarize the reader to the notations used.
"Consider a min-atch B of size m. Since the normalization is applied to each activation independently, let us focus on a particular activation $x^{(k)}$ and omit k for clarity. We have m values of activation in the minibatch;

$$
B=\left\{x_{1 \ldots m}\right\}
$$

Let the normalized values be $\hat{x}_{1 \ldots m}$, and their linear transformations be $y_{1 \ldots . m}$."
The mean and variance of the mini-batch are μ_{B} and σ_{B}^{2} respectively. γ and β are the scaling and shifting parameters of the batch-norm layer.

$$
\begin{equation*}
\mu_{B}=\frac{1}{m} \sum_{i=1}^{m} x_{i} \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
\sigma_{B}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\mu_{B}\right)^{2} \tag{2}\\
\widehat{x_{i}}=\frac{x_{i}-\mu_{B}}{\sqrt{\sigma_{B}^{2}+\epsilon}} \tag{3}\\
y_{i}=\gamma \widehat{x_{i}}+\beta \tag{4}
\end{gather*}
$$

Back Propagation:

Let us consider that we have $\frac{\partial l}{\partial y_{i}}$ flowing upstream into our network. We will back-prop into every parameter in the batch-norm with the help of chain rule. For our convenience we will replace $\frac{\partial l}{\partial a}$ where a is any parameter, with $d a$.

Diff (4) wrt $\widehat{x_{i}}$ we get

$$
\begin{gather*}
\frac{\partial y_{i}}{\partial \widehat{x_{i}}}=\gamma \tag{5}\\
\frac{\partial l}{\partial \widehat{x_{i}}}=\frac{\partial l}{\partial y_{i}} \cdot \frac{\partial y_{i}}{\partial \widehat{x_{i}}}
\end{gather*}
$$

$$
\begin{equation*}
\Longrightarrow \frac{\partial l}{\partial \widehat{x_{i}}}=d y_{i} \cdot \gamma \tag{From5}
\end{equation*}
$$

Note to the reader: When the gradient $d y_{i}$ flows into the network, each of the $i^{t h}$ element of $\widehat{x_{i}}$ is effected by the corresponding $i^{\text {th }}$ element of $d y_{i}$. Now to consider all the collective gradient flow for the single valued β and γ we need to $a d d$ the gradients flowing in.

Diff (4) wrt β we get

$$
\begin{gather*}
\frac{\partial y_{i}}{\partial \beta}=1 \tag{6}\\
\frac{\partial l}{\partial \beta}=\sum_{i=1}^{m} \frac{\partial l}{\partial y_{i}} \cdot \frac{\partial y_{i}}{\partial \beta} \\
\Longrightarrow \frac{\partial l}{\partial \beta}=\sum_{i=1}^{m} d y_{i} \tag{From6}
\end{gather*}
$$

Diff (4) wrt γ we get

$$
\begin{equation*}
\frac{\partial y_{i}}{\partial \gamma}=\widehat{x_{i}} \tag{7}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial l}{\partial \gamma}=\sum_{i=1}^{m} \frac{\partial l}{\partial y_{i}} \cdot \frac{\partial y_{i}}{\partial \gamma} \\
& \Longrightarrow \frac{\partial l}{\partial \gamma}=\sum_{i=1}^{m} d y_{i} \cdot \widehat{x_{i}} \tag{From7}
\end{align*}
$$

A note for the reader: When the gradient $\widehat{d x_{i}}$ flows into the network, each of the $i^{\text {th }}$ element of x_{i} is effected by the corresponding $i^{\text {th }}$ element of $d \widehat{x_{i}}$. Now to consider all the collective gradient flow for single valued μ_{B} and σ_{B}^{2} we need to add the gradients flowing in.
$\operatorname{Diff}(3)$ wrt σ_{B}^{2}

$$
\begin{gather*}
\frac{\partial \widehat{x_{i}}}{\partial \sigma_{B}^{2}}=\frac{\left(\sqrt{\sigma_{B}^{2}+\epsilon}\right)(0)-\left(x_{i}-\mu_{B}\right) \frac{1}{2}\left(\sigma_{B}^{2}+\epsilon\right)^{-\frac{1}{2}}}{\sigma_{B}^{2}+\epsilon} \\
\Longrightarrow \frac{\partial \widehat{x_{i}}}{\partial \sigma_{B}^{2}}=-\left(x_{i}-\mu_{B}\right) \frac{1}{2}\left(\sigma_{B}^{2}+\epsilon\right)^{-\frac{1}{2}-1} \\
\Longrightarrow \frac{\partial \widehat{x_{i}}}{\partial \sigma_{B}^{2}}=-\left(x_{i}-\mu_{B}\right) \frac{1}{2}\left(\sigma_{B}^{2}+\epsilon\right)^{-\frac{3}{2}} \tag{8}\\
\frac{\partial l}{\partial \sigma_{B}^{2}}=\sum_{i=1}^{m} \frac{\partial l}{\partial y_{i}} \cdot \frac{\partial y_{i}}{\partial \widehat{x_{i}}} \cdot \frac{\partial \widehat{x_{i}}}{\partial \sigma_{B}^{2}} \\
\Longrightarrow \frac{\partial l}{\partial \sigma_{B}^{2}}=\sum_{i=1}^{m} \frac{\partial l}{\partial \widehat{x_{i}}} \cdot \frac{\partial \widehat{x_{i}}}{\partial \sigma_{B}^{2}} \\
\Longrightarrow \frac{\partial l}{\partial \sigma_{B}^{2}}=\sum_{i=1}^{m} \widehat{d x_{i}} \cdot \frac{\partial x_{i}}{\partial \sigma_{B}^{2}}
\end{gather*}
$$

$$
\Longrightarrow \frac{\partial l}{\partial \sigma_{B}^{2}}=\sum_{i=1}^{m}\left(\widehat{d x_{i}}\right) \cdot\left(-\left(x_{i}-\mu_{B}\right) \frac{1}{2}\left(\sigma_{B}^{2}+\epsilon\right)^{-\frac{3}{2}}\right)
$$

$$
\begin{gather*}
\text { Diff }(2) w r t \mu_{B} \\
\frac{\partial \sigma_{B}^{2}}{\partial \mu_{B}}=\frac{\partial\left(\frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\mu_{B}\right)^{2}\right)}{\partial \mu_{B}} \\
\Longrightarrow \frac{\partial \sigma_{B}^{2}}{\partial \mu_{B}}=\frac{1}{m} \sum_{i=1}^{m}-2\left(x_{i}-\mu_{B}\right) \tag{9}\\
\operatorname{Diff}(3) w r t \mu_{B} \\
\frac{\partial \widehat{x_{i}}}{\partial \mu_{B}}=\frac{\partial\left(\frac{x_{i}-\mu_{B}}{\sqrt{\sigma_{B}^{2}+\epsilon}}\right)}{\partial \mu_{B}} \\
\Longrightarrow \frac{\partial \widehat{x_{i}}}{\partial \mu_{B}}=\frac{-1}{\sqrt{\sigma_{B}^{2}+\epsilon}} \tag{10}\\
\frac{\partial l}{\partial \mu_{B}}=\left(\frac{\partial l}{\left.\sum_{i=1}^{m} \frac{\partial l}{\partial x_{i}} \cdot \frac{\partial x_{i}}{\partial \mu_{B}}\right)+\frac{\partial l}{\partial \sigma_{B}^{2}} \cdot \frac{\partial \sigma_{B}^{2}}{\partial \mu_{B}}}\right. \\
\Longrightarrow \frac{\partial l}{\partial \mu_{B}}=\left(\sum_{i=1}^{m} d x_{i} \cdot \frac{-1}{\sqrt{\sigma_{B}^{2}+\epsilon}}\right)+d \sigma_{B}^{2} \cdot \frac{1}{m} \sum_{i=1}^{m}-2\left(x_{i}-\mu_{B}\right)
\end{gather*}
$$

(From 9 \& 10)

$$
\operatorname{Diff}(1) \text { wry } x_{i},
$$

removing the summation sign as the grad is done element wise

$$
\begin{gather*}
\Longrightarrow \frac{\partial \mu_{B}}{\partial x_{i}}=\frac{\partial\left(\frac{1}{m} x_{i}\right)}{\partial x_{i}} \\
\Longrightarrow \frac{\partial \mu_{B}}{\partial x_{i}}=\frac{1}{m} \\
\operatorname{Diff}(2) w r t x_{i} \\
\frac{\partial \sigma_{B}^{2}}{\partial x_{i}}=\frac{\partial\left(\frac{1}{m}\left(x_{i}-\mu_{B}\right)^{2}\right)}{\partial x_{i}} \\
\Longrightarrow \frac{\partial \sigma_{B}^{2}}{\partial x_{i}}=\frac{1}{m} 2\left(x_{i}-\mu_{B}\right) \\
D i f f(3) w r x_{i} \\
\frac{\partial \widehat{x_{i}}}{\partial x_{i}}=\frac{\partial\left(\frac{x_{i}-\mu_{B}}{\sqrt{\sigma_{B}^{2}+\epsilon}}\right)}{\partial x_{i}} \\
\Longrightarrow \frac{\partial x_{i}}{\partial x_{i}}=\frac{1}{\sqrt{\sigma_{B}^{2}+\epsilon}} \tag{13}\\
\frac{\partial l}{\partial x_{i}}=\frac{\partial l}{\partial \widehat{x_{i}}} \cdot \frac{\partial x_{i}}{\partial x_{i}}+\frac{\partial l}{\partial \sigma_{B}^{2}} \cdot \frac{\partial \sigma_{B}^{2}}{\partial x_{i}}+\frac{\partial l}{\partial \mu_{B}} \cdot \frac{\partial \mu_{B}}{\partial x_{i}} \\
\text { From }(11),(12) a n d(13)
\end{gather*}
$$

$$
\Longrightarrow \frac{\partial l}{\partial x_{i}}=\frac{\partial l}{\partial \widehat{x_{i}}} \cdot\left(\frac{1}{\sqrt{\sigma_{B}^{2}+\epsilon}}\right)+\frac{\partial l}{\partial \sigma_{B}^{2}} \cdot\left(\frac{1}{m} 2\left(x_{i}-\mu_{B}\right)\right)+\frac{\partial l}{\partial \mu_{B}} \cdot \frac{1}{m}
$$

Final thoughts:
Pardon my poor drawing and $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ skills. This is not a blog per say but a piece that helps build the intuitions for the process. I hope the reader is clear with the process and can visualize how beautiful the idea of batch norm is.
I would love to hear from the reader on any discrepancies and extensions to this work. Thank you for your time.

