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:Introduction
I was reading the paper on BatchNorm [Batch Normalization: Accelerating Deep Network Training by 

Reducing Internal Covariate Shift; by Sergey Ioffe and Christian Szegedy] and stumbled upon a number 

of equations.

Figure 1: The back propagation through the batch norm layer

These equations are responsible for the backward propagation through a batch norm layer. Even after 

reading the equations multiple times I found the equations very unintuitive. This led me to sit down with 

my notepad and scribble the forward and backward propagation graphs. I thought of uploading a scan of 

my notepad but that would not have been helpful at all (my handwriting can kill people, in the negative 

sense). Here I am providing my sketches and derivations to make sense of what the authors say 

through the equations.

Aside: It would really help if you open the paper along side this blog post. The notations used here are 

exactly the same as that of the paper.

:Feed Forward
An excerpt from the paper will familiarize the reader to the notations used.
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:Back Propagation

Let us consider that we have  flowing upstream into our network. We will back-prop into every 
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Note to the reader: When the gradient  flows into the network, each of the  element of  is effected dyi ith xi
by the corresponding  element of . Now to consider all the collective gradient flow for the single ith dyi
valued  we need to  the gradients flowing in.𝛽 and 𝛾 add
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A note for the reader: When the gradient  flows into the network, each of the  element of  is dxi ith xi
effected by the corresponding  element of . Now to consider all the collective gradient flow for ith dxi
single valued  we need to  the gradients flowing in.𝜇 and 𝜎B
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Diff 1 wrt x ,( ) i

removing the summation sign as the grad is done element wise
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:Final thoughts
Pardon my poor drawing and skills. This is not a blog per say but a piece that helps build the 

intuitions for the process. I hope the reader is clear with the process and can visualize how beautiful the 

idea of batch norm is.

I would love to hear from the reader on any discrepancies and extensions to this work. Thank you for 

your time.
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